
Dominique A. Heger, Fortuitous Technology, (dom@fortuitous.com), Austin, TX, 2006

Introduction to Modeling Based Performance Engineering

Abstract

Building efficient applications as hierarchical compositions of cooperating components (modules)
depends significantly on having a thorough knowledge of both, component performance, as well as
component interaction. Hence, to make effective decisions concerning configuration, deployment, and
interconnection, it is important to develop a Performance Engineering (PE) methodology that complements
the traditional application development processes. Ideally, performance techniques such as measurement,
analysis, and modeling, which extend the programming and execution environment to be both, performance
observable and performance aware, should support the methodology. However, the diversity of
functionality and the complexity of the implementations (such as different programming languages,
hardware platforms, and thread parallelism modes) challenge the area of performance technology to offer
more sound solutions.

The discipline of Software Engineering (SE) incorporates the procedures, methods, and tools that
control the software development process. SE provides the foundation for building high quality software
products in an efficient and effective manner. There are many dimensions to software quality, including
availability, maintainability, scalability, functionality, flexibility, security, and performance. Many of the
SE methodologies in use today only focus on ensuring that the software product meets functional
requirements, while being developed within a certain time-frame and financial budget. In today’s market
place, performance requirements are increasingly difficult to manage, while at the same time, are getting
more and more exposed. The deployment of complex, multi-tier, client-server based software systems
causes a pure analytical modeling based performance analyses approach to become much more complex
(while still very valuable though), resulting into performance models that require a much more in-depth
experience in mathematics and queuing theory. Just as the nature of the software and computer systems has
evolved, so has the user community. Most enterprises no longer design, develop, and deploy systems for
their own internal use only, as today’s systems are primarily intended for direct customer contact. The
evolution of the Internet (particularly the area of E-commerce) has placed a much higher emphasis on
systems availability, maintainability, and scalability (with a main focus on actual systems performance).

This article outlines a methodology that enables systems performance engineering. The underlying
focus is on avoiding the case where performance issues are being identified in either the system test phase,
in quality assurance, or even in the initial deployment phase. Mitigating any potential performance risks
(early on in the systems life cycle), determining and evaluating systems scalability (based on additional
physical and logical resources that are made available), as well as evaluating the aspects of systems
support, are the key components that directly contribute and impact the methodology. The argument being
made is that in order to evaluate end-to-end performance in a multi-tier environment, the combination of an
analytical and a Petri-Net based (simulation) modeling approach is applicable, as it enables analyzing and
evaluating the dynamics of an entire infrastructure. This includes any potential outside influences, such as
other applications that compete for the shared (hardware and or software) resources. Similar to data
modeling, prototyping, or use-case studies conducted by the software design and development teams, Petri-
Net based simulation modeling is focused on elaborating, evaluating, and analyzing systems performance
under a variety of circumstances. Simulation modeling involves developing, calibrating, verifying,
validating, and utilizing a model of an entire system to analyze, evaluate, and estimate key performance
metrics such as response time, throughput, and resource utilization. The actual model is derived from either
Sequence Diagrams (SD) or Use Case Maps (UCM) that are provided by the design team, and incorporates
the hardware and software infrastructure as determined by the systems architects.

Introduction

In a commercial environment, a business process is the driving factor that triggers the actual need
for a system. As a user performs a certain task on the system, the application is called upon to basically
retrieve data, to perform calculations or comparisons, and to update information. Essential to the
performance engineering process is an estimate of the volume of work that has to be performed. The volume

Dominique A. Heger, Fortuitous Technology, (dom@fortuitous.com), Austin, TX, 2006

of work is being considered as one of the input parameters into either the analytical or the simulation
model. To reiterate, a user application supports the execution of a business process. When being invoked,
an application (either through library or system calls) utilizes actual physical and logical resources. Some
of the key physical resources are the CPU, memory, I/O, and network related components, whereas some of
the logical resources can be identified as the memory tables, the file system block sizes, or the network
packet sizes. The called upon resources have to be identified and quantified, as they represent additional
input parameters into the model. In practice, these resources are either determined through an educated
guessing process, are being extracted from a similar system through an empirical analysis, or are derived
from an ‘instrumented’ prototype that mimics the actual system. As an example, by utilizing tools such as
ARM, in conjunction with a prototype, the application can report detailed response time measurements for
each individual business function component, as well as for the entire transaction. As an example, based on
the collected data, it is feasible to separate the think time from the actual system processing time, and to
determine which application functionality contributes the most to the overall response time or resource
utilization.

Methodology to Conduct End-to-End Performance Analysis

Retrofitting performance improvements into an existing product is a daunting and expensive task,
and may delay the deploying of the system. The following section outlines a very pragmatic, divide-and-
conquer based approach, which consists of several cascading steps that can be transformed into a
comprehensive systems performance analysis. The methodology utilizes studies conducted by Smith, Jain,
Siddiqui et al. as a blueprint (see references). In a nutshell, the overall system is basically divided up into
parts that correspond to system responsibilities that are identified as having a certain performance budget.
Utilizing the performance budgets (the budgets are either being guessed or determined through an empirical
analysis), a system’s overall performance can be estimated and potential design changes can be analyzed
dynamically. To reiterate, the analytical or simulation models can not only be used to predict overall
response time, but also to define and evaluate certain performance goals. In other words, feasible
performance budgets can be determined and quantified to meet the overall performance goals, resulting into
a process that can be described as supporting an incremental change in performance analysis.

Based on the complexity of the system and the question to be answered, either the analytical or the
simulation model is the key to understanding the individual performance budgets, and to meet the overall
performance goal. Once the model is developed, the analysis can be conducted either by utilizing a forward
or a reverse direction based analysis approach. In a forward direction based analysis, the logical flow starts
with the individual performance budgets and ends up with an overall quantification of the entire system,
ergo can be used to conduct a feasibility analysis in regards to the system’s requirements. As already
discussed, the initial performance budgets might have to be determined either based on experience
(normally incorporating a reserve for contingencies), or by utilizing a prototype-based approach. A reverse
direction based study incorporates an analysis that starts with the overall performance goal that is being
decomposed into individual performance budgets (on a per operation level). The reverse path based
approach basically generates (again, on a per-operation based level) the has-to-be-achieved individual
performance budgets, and might serve as a tool to identify infeasible performance goals.

Step 1: Design Specification

The design specification captures the system behavior as a set of scenarios (at a certain level of
abstraction), outlining the invoked software subsystems, operations and responsibilities on a per business
function level. Sequence Diagrams (SD) or Use Case Maps (UCM) provide the flexibility and detail
necessary to develop the model, and to conduct sensitivity and capacity studies.

Step 2: Performance (Demand) Budgets

It is imperative to not only identify the performance goals prior to any modeling activities, but also
to have a very clear picture of what performance questions are supposed to be answered in the study. This
is crucial as the performance goals drive the level of (modeling) detail necessary to answer the performance
questions. The individual performance budgets are actual values that describe the resource demand of the

Dominique A. Heger, Fortuitous Technology, (dom@fortuitous.com), Austin, TX, 2006

operations and responsibilities as identified in the SD or the UCM. As an example, the units to be
determined could be in CPU-seconds, operation counts, packet sizes, or Mbytes moved through the
networking and/or the I/O subsystem. To reiterate, the initial budgets have to be either assumed or guessed
based on experience, derived from a similar system, measured utilizing existing components, or determined
based on a empirical analysis conducted by using a prototype. Further, it is imperative to identify certain
workload profiles that identify the set of operation mixes (as being anticipated in real world scenarios).

Step 3: Identifying the Hardware, Software, and Communication Infrastructure

The application specifications do not completely define an entire system per se. In most
performance studies that operate in a multi-tier environment, it is necessary to obtain the hardware layout,
the operating system specifications, as well as the incorporated network and middle-ware infrastructure
from the architecture team. All these elements have to be determined prior to developing the model (this
process might be assumption based as well).

Step 4: Developing the (Stochastic Simulation) Model

While conducting a performance analysis, analysts normally utilize a combination of analytical
model, simulation model, and empirical analysis based techniques. An analytical model simulates the
behavior of a system, is build through equations, and the actual performance is derived mathematically.
With an analytical model, it is normally necessary to construct a number of parameterized functions that
approximate the workload characteristics of the system components (see Figure 1). In other words, an
analytical model provides average and standard deviation types of statistics, as the actual workload
distribution is normally ignored. A number of simplifying assumptions has to be made to trace the model.
How these assumptions reflect the real world behavior and the extent to which they can be formulated as
mathematical equations basically determines the accuracy and usefulness of this approach. Analytical
models are generally cheaper and faster to build than simulation models, and can easily be tailored to
analyze and predict (after calibrating the model) a wide variety of performance-related aspects of a system.

Figure 1: Analytical Queuing Model representing a Single Node in a Cluster with Parallelization and Synchronization Centers

Simulation models on the other hand consist of a suite of modules or programs that are designed to
capture the characteristics of a system under real world conditions. The basic idea is to model the entire
system and to simulate its dynamic behavior by taking the actual workload distribution into account. More
specifically, each event (or state transition) in a computing environment is being considered, analyzed, and

Exit From
Network

p=1/δ

Cyclic
Parallel
Program Parallel Program

Performs δ Cycles

Processing
Phase:
t(cpu) / фκ

pa(io)

 β

seq(cpu)

seq(io)

Parallelization
Center

Synchronization
Center

CPU and
Communication
Subsystem

I/O Subsystem

Communication Phase:
t(com) / κ

p=1/κ

Dominique A. Heger, Fortuitous Technology, (dom@fortuitous.com), Austin, TX, 2006

modeled. Simulation models are normally rather complex, and hence more expensive to build than an
analytical model, but may provide a higher degree of accuracy (and are extensively being used to conduct
sensitivity studies).

An empirical analysis on the other hand involves executing an application or benchmark program
on an existing system and to measure actual performance. This approach provides the most accurate
performance data of the three discussed techniques, but it only analyzes one specific workload (the one that
is being executed with a specific set of parameter values) and normally can not be used to conduct a
sensitivity analysis per se. In some circumstances, this approach can be very time intensive (and
expensive), as the test environment either has to be made available, or has to be built from scratch. To re-
emphasize, most performance studies consist of a mixture of the three approaches discussed in this article.
The proper approach (that is applicable to conduct the analysis) is chosen based on the performance goals
and the to-be-answered performance questions.

Figure 2: DSPN Model Representing the Linux 2.6 bio and IO scheduler Abstractions

Commercial simulation modeling tools, such as the HyPerformix Infrastructure Optimizer (IO),
represent actual state-event systems where a task can be analyzed as it flows through an entire system,
while visiting different software and hardware components. On the other hand, deterministic stochastic
Petri-net (DSPN) solutions (some DSPN packages are available as freeware) are utilized to facilitate and
formulate the high-level modeling abstractions of discrete-event systems that consist of exponential and
deterministic subtasks (see Figure 2). The data collected in steps 1, 2 and 3 of the outlined methodology
serves as the blueprint to develop and calibrate the model. If the individual performance budgets were
obtained by conducting an empirical analysis, the final model can be verified and validated against the
actually measured systems performance (to ensure that the model reflects reality, and can be used to
conduct a comprehensive sensitivity or capacity study). If the model cannot be validated at this stage of the
system life cycle, the model can be used (as an example) in the design phase to evaluate different design
alternatives. Further, it is feasible to analyze and quantify the impact that an infrastructure change has on
systems performance, an approach that might require normalizing the performance data, as the analysis is
now focused on relative and not on actual performance.

Dominique A. Heger, Fortuitous Technology, (dom@fortuitous.com), Austin, TX, 2006

Step 5: Analysis and Recommendations

Running an actual simulation (either in a homogeneous or heterogeneous environment) allows
comparing the obtained (simulation based) results to the actual performance requirements. An artifact of
running a simulation is to utilize the performance results to verify that if the performance budgets are being
met, overall systems performance is adequate. Another benefit is the potential of adjusting the capacity of
certain physical (such as the CPU speed) and logical (such as the number of concurrent worker threads)
resources, so that given the overall performance budget, the performance goals might either be met or more
closely be approached.

In general, actual recommendations on how to improve performance (by for example either
altering the design or adjusting hardware or software components) are result dependent. In most
circumstances, changes are required if overall performance does not meet the goals. A best practice
approach is to change one component (in the model) at a time, and to rerun the simulation after the change
has been implemented to clearly understand, quantify, and document the progress.

Summary

A modeling based approach (normally in conjunction with other tools and techniques) is
applicable throughout the system life cycle. In the design phase, evaluating overall performance, analyzing
and quantifying different design alternatives and/or different hardware configurations is imperative to
mitigate the risk of encountering (expensive) performance deficiencies later on in the project. In most
cases, in the development phase (where more performance related data becomes available), the model can
be re-calibrated and additional sensitivity and capacity studies can be conducted. This evolutionary process
generally leads to comprehensive test scenarios that can be simulated in the (stress) test phase. The outlined
methodology enables a comprehensive performance analysis and documentation process that can further be
used as a communication tool among the involved design, development, and test teams. The process
represents the common denominator for all the involved parties, and can be considered as the tool that
drives most of the technical discussions. A sequel to this article will discuss an actual 3-tier architecture
and elaborate on the combination of analytical and simulation models that were being used to conduct the
PE project.

References

1. Al-Fatha, I., Majumdar, S., “Performance Comparison for Client-Server Interactions in CORBA”, ICDCS 98, May 1998

2. Buhr, R., “Use Case Maps for Object Oriented Systems”, Prentice-Hall, 1995

3. Franks, G., Majumdar, S., “Performance Analysis of Distributed Server Systems”, 6th International Conference on Software
Quality, Ottawa, Canada, 1996

4. Hennessy, J., Patterson, D., “Computer Architecture, a Quantitative Approach”, Third Edition, Morgan Kaufmann, 2002.

5. Jain, R., “The Art of Computer System Performance Analysis”, John Wiley, 1991

6. Koenigs, A. “Industrial Strength Parallel Computing”, Morgan Kaufmann, San Francisco, 2000

7. Siddiqui, K., “Time Performance Budgeting of Software Design”, Masters Thesis, Carleton University, Ottawa, Canada, 2001

8. Smith, C., “Performance Engineering of Software Systems”, Addison-Wesley, 1990

9. Stone, H., “High Performance Computers”, Addison-Wesley, First Edition, New York, NY, 1991

10. Pfister, G. F., “In Search of Clusters”, Second Edition, Prentice Hall PTR, NY, 1998.

11. ARM 3.0 for JAVA http://regions.cmg.org/regions/cmgarmw/CMG00_paper_final.pdf

12. Infrastructure Optimizer (HyPerformix) http://www.hyperformix.com

http://regions.cmg.org/regions/cmgarmw/CMG00_paper_final.pdf
http://www.hyperformix.com/

	Abstract
	
	
	
	Introduction

	Step 1: Design Specification
	Step 2: Performance (Demand) Budgets

	Summary
	References

