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I/O Request Prioritization – An Analytical Analysis and Quantification

Introduction

A disk drive is considered as a delivery
mechanism for persistent data storage that
utilizes magnetic recording techniques. The
design objectives are to provide adequate
capacity, reliability, and performance at a
minimal cost factor. A single disk drive
represents a 3-dimensional space of recorded
information. The surface of a disk platter
provides 2 dimensions, whereas the stack of disk
platters is considered as the third dimension.
Adding additional disk platters increases the total
capacity in the disk subsystem. This approach
though increases the cost factor and causes some
difficulties in regards to increasing the disk’s
areal density [1],[2],[7]. Increased vibrations in
the spindle, susceptibility to external vibration,
and internal disturbance resulting from turbulent
airflow are all artifacts of increasing the number
of platters in a given space. For decades, drive
capacity has been increased by reducing the
space between data tracks, measured in tracks
per inch (TPI), and increasing the linear density
of the bits along a track, measured in bits per
inch (BPI). The product of these 2 terms is
known as areal density, and is measured today in
Gbits per square inch. A contemporary disk drive
may have 30+ Gbits per square inch. The fact of
the matter is that the challenge of designing
head, media, and signal-processing systems to
achieve higher areal density dominates the
development cycle of any disk drive.

In the realm of the older I/O
programming model, to locate specific data, the
disk drive's logic requires the cylinder, the head,
and the sector information. The cylinder
specifies the track on which the data resides.
Based on the layering technique used, the tracks
underneath each other form a cylinder. The head
information identifies the specific read-write
head, and therefore the exact platter. At this
point, the search is narrowed down to a single
track on a single platter. Ultimately, the sector
value represents the specific sector on the track,
and the search is completed. Contemporary disk
subsystems do not communicate in terms of
cylinders, heads and sectors. Instead, modern
disk drives map a unique block number over
each cylinder/head/sector construct. Operating
systems address the disk drives by utilizing these
block numbers (logical block addressing). The

culprit is that it is not guaranteed though that the
physical mapping is actually sequential [4]. But
the statement can be made that there is a rather
high probability that a logical block n is
physically adjacent to a logical block n+1. The
existence of the discussed sequential layout is
paramount to the host system while scheduling
or reordering I/O requests. Contemporary disk
drives utilize a technology called Zone Bit
Recording (sometimes referred to as Zoned
Constant Angular Velocity) to increase capacity.
Incorporating the technology, cylinders are
grouped into zones based on their distance from
the center of the disk. Each zone is assigned a
number of sectors per track [6]. The outer zones
contain more sectors per track compared to the
inner zones that are located closer to the spindle.
With ZBR disks, the actual data transfer rate
varies depending on the physical sector location.
Given the fact that a disk drive spins at a
constant rate, the outer zones that contain more
sectors will transfer data at a higher rate than the
inner zones that contain fewer sectors [5].

Further, present-day requirements for
systemized, network-based storage of data
encompass a range of users and applications that
would have staggered the imagination 2 decades
ago [5]. The meteoric rise of Internet data access
became possible as a result of improved network
capabilities, and then commenced to drive
frenetic development of newer and more
effective advances in those capabilities
themselves. Nowadays, it is difficult to architect
a scalable IO solution in which RAID systems
are not deployed. The two-decade-old principles
of large data storage and management have
grown and evolved into new forms, yet the basic
advantages of dependability, availability, and
protection remain key factors in RAID
technology’s enduring value [4]. The basic
function of a RAID structure is to provide a
plurality of disk units for the purpose of massive
data storage. The intention of the RAID
technology is to take advantage of the large
amount of space by storing important data in
more secure (redundant) locations, and yet
access the data as easily and quickly as on a
single disk drive based system. With the
increased popularity and availability of RAID
technology came an explosion in available
solutions, each suitable to different workload
profiles. In addition, the evolution of the RAID
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technology produced hugely improved storage
capabilities. Essential to the efficient
optimization of RAID technology is the
prevention of a bottleneck scenario. One basic
approach taken to mitigate the issue lies in
distributing the burden of transfer among all the
disks in the array, thus reducing the workload
borne by any single disk drive. Nevertheless, the
argument made in this study is that any RAID
solution is still strongly impacted by the
capabilities of the single disk drives that
constitute the IO subsystem. Therefore,
understanding the single disk drive capabilities is
still paramount in a RAID environment. The
(well-documented) performance delta between
SATA and FC disks solutions underlines this
claim [9]. Further, rather complex storage
management requirements are significant, as the
focus is on allowing efficient access to an entire
data pool, by presenting applications with a
single access point that is irrespective of the
actual RAID array size.

1.0 IO Prioritizing Model

Figure 1: State Transition Diagram (N = 3)

The next few paragraphs introduce the
proposed stochastic Markov model that
incorporates the finite buffer constrains of an
actual disk drive, and allows quantifying the I/O
performance behavior based on workload
scenarios that simulate concurrent read() and
write() requests. The assumption made in this
study is that read() requests have a higher
priority than write() requests, a claim that is
supported by the Linux 2.6 anticipatory (AS) and
deadline I/O schedulers, respectively. The issue
surrounding the various disk scheduling polices
has been an area of extended discussions [3],[5].
The disk characteristics and the distribution of
the disk I/O requests determine the performance
of any scheduling policy. The mean service time

for small random I/O requests equals to the
summation of the seek time, disk rotational
latency, transfer time, controller latency, and the
queuing latency, respectively. It has to be
pointed out that the queuing latency is not a
fixed entity, as the queuing behavior is impacted
by the set of IO operations that await service.
Based on a geometrical probability argument, the
average-seek distance for random I/O operations
equals to 1/3 of the number of available disk
cylinders (d ≈ C/3). It has to be pointed out
though that as the seek time characteristic t(d) (1
≤ d ≤ C−1) is nonlinear, the mean seek time can
not be expressed as being equal to t(d) [8]. The
(conceptional) I/O model introduced in this study
focuses on quantifying the single disk queue
blocking probability, as well as the response time
behavior. The study assumes a finite disk queue
of size N. The single disk drive is modeled as a
2-priority M/M/1/N system. Arrival rates into the
system are labeled as λw (write) and λr (read),
respectively, whereas the service rates are
expressed as µw (write) and µr (read). The
read() requests have a higher (non-preemptive)
priority than the write() requests. The state of the
system is represented as a vector iov = [w,r,sio],
where w represents the number of write requests,
r the number of read requests, and sio the state of
the system (an integer value in a set siov [0,1,2]).
The sio indicator represents either an empty
system (0), a system servicing a read() request
(1), or a system processing a write() request (2).
To simplify the mathematical abstraction of the
proposed approach, this study assumes that the
queue size N = 3. The model though can easily
be extended to simulate much larger queue sizes.

Table 1: Workload Behavior (N = 3)

State Workload (see Vector iov)
S0 0 read, 0 write, 0 = system empty
S1 0 read, 1 write, 2 = processing write request
S2 1 read, 0 write, 1 = processing read request
S3 1 read, 1 write, 1 = processing read request
S4 1 read, 1 write, 2 = processing write request
S5 0 read, 2 write, 2 = processing write request
S6 2 read, 0 write, 1 = processing read request
S7 1 read, 2 write, 2 = processing write request
S8 2 read, 1 write, 2 = processing write request
S9 2 read, 1 write, 1 = processing read request
S10 1 read, 2 write, 1 = processing read request
S11 0 read, 3 write, 2 = processing write request
S12 3 read, 0 write, 1 = processing read request

Based on the State Transition Diagram
in Figure 1 and the workload behavior expressed
in vector iov (see Table 1), the following global
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balance equations can be defined (in this
scenario, p0 correlates to S0, p1 to S1, etc.).

The system as presented in Figure 1 is
considered to be conservative, and therefore the
summation of all the state probabilities equals to
1. This implies that the 13 system equations are
not independent. Considering the equations for
the states 0 through 11 as the independent
equations of the system allows determining the
state probabilities (see Appendix A for a detailed
discussion on how to resolve the system). The
goal of the analysis is now to mathematically
abstract the mean number of write requests (Nw),
the mean number of read requests (Nr), the mean
throughput of the system (Xs), and the mean
response time of the requests (Rr). Further, the
study quantifies the queue size (N) based on the
blocking probability (Pq) [5],[10],[11].

Based on Little’s Law [10], the mean
aggregate response time can be expressed as Rr
= (Nr + Nw) / Xs (Equation 5). A new I/O
request will have to be blocked if r + w = 3.
Therefore, the queue size based blocking
probability can be expressed as:

2.0 Simulation & Results

To illustrate the application of the
(conceptional) model as presented in this study,
the following experiments were conducted. In a
1st phase, the model was calibrated with a read
arrival rate of 1 (λr = 1), a read service rate of 20
(µr = 20), and a write service rate of 15 (µw =
15). In this 1st scenario, the arrival rate of the
write requests (λw) was scaled from 3 to 10. In a
2nd experiment, the arrival rate of the write
requests was set to 1 (λw = 1), while the arrival
rate of the read requests (λr) was scaled from 3
to 10. The service rate of the read (µr) and write
requests (µw) equaled to 20 and 15, respectively.
The last 2 experiments were conducted with a
read arrival rate of 1 (λr = 1), and a write arrival
rate of 2 (λw = 2). This scenario basically
implies that N = 3. In a first experiment, the
write service rate was set to 15 (µw = 15),
whereas the read service rate (µr) was scaled
from 10 to 20. In a second experiment, the read
service rate was set to 20 (µr = 20), whereas the
write service rate (µw) was scaled from 10 to 20.
The goal if these experiments was not to quantify
effective performance, but to discuss the relative
performance behavior among the read() and the
write() requests, focusing on the priority scheme
outlined in this study.

Figure 2: Blocking Probability (Scaled Arrival Rate)
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Figure 2 and 3 outline the relative
performance behavior of the read() verses the
write() requests while scaling the I/O request
arrival rate. The delta in the processing rate, as
well as the fact that in this study the read()
request are prioritized over the write() requests is
visible in the blocking probability graph.

Figure 3: Response Time (Scaled Arrival Rate)

Further, the trajectories for the response
time reveal that while scaling the write() request
arrival rate, the performance is impacted by the
lower service rate for processing the additional
write() operations. In the same scenario, the
additional read() requests are processed much
more efficiently. The relative throughput
behavior disclosed in Figure 4 underlines that the
model was calibrated with a lower fixed service
rate for the write() requests (µw = 15), as
compared to the read() operations ((µr = 20).
The analysis revolved around 2 write() and 1
read() operation, respectively. While scaling the
service rate for the I/O operations, the read-
scaling scenario resulted in an overall smaller
throughput gain (actual performance delta) than
the write scaling option.

Figure 4: Response Time (Scaled Service Rate)

At a service rate of 10, the read scenario
benefits from a higher (µw = 15) fixed write
service rate employed for the 2 write()

operations. At the same service rate level, the
write scenario is impacted by having to process 2
I/O operations at a service rate of 10 (µw = 10).
At a service rate of 20, the picture is reversed, as
the benchmark simulates 3 I/O operations at a
service rate of 20 for the write() scenario,
whereas the read() scenario results in operating
on 2 write() operations that both encounter a
service rate of 15 (µw = 15).
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1. Appendix A: Linear Systems

A system of N first-order linear
homogeneous differential equations with constant
coefficient can be expressed in matrix form as P(t) =
MP(t) (Equation 1), where P(t) represents a column
vector consisting of the N functions (P1 (t), P2(t), … ,
PN(t)), and M reflects the N x N coefficient matrix.
Assuming the determinant of M is non-zero (which
implies that the N equations are independent), and
assuming that the initial values for P(0) are known, the
complete solution of this system of equations can be
expressed as:

Equation 2 can be utilized to determine the
values of each function Pj(t) (for any given time t). In
some circumstances, it is useful though to generate
explicit expressions for the individual functions Pj(t).
To accomplish this, first let f(r) = |M-ρI| be the
characteristic polynomial of the system, with the roots
(ρ11, ρ2, …, ρN). To account for duplicate roots, let n
denote the number of distinct roots, and let mj denote
the multiplicity of the j-th distinct root. Therefore, m1
+ m2 + … + mn = N. Hence, each individual
component of P(t) reflects the form:

The objective is to determine the
coefficients Ci,j,k explicitly in terms of M and P(0).
The starting point is to note that if P(s)(t) = dsP(t)/dts

denotes the s-th derivative of P with respect to t,
Equation (1) immediately implies that:

To express Equations 3 in matrix form, it is
feasible to place the C coefficients into a N x N matrix
C, and to place the factors of the form tkeρt into a
column vector (E). To illustrate, assuming a system
with a degree N = 4 with n = 2 distinct roots, where 1
root has a multiplicity m = 3, the general solution can
be expressed as in Equation 5. Therefore, it is feasible
to outline that P(t) = CE(t), and hence Ps(t) = CE s(t)

(Equation 6). By letting [V1, V2, …, VN] denote the
square matrix with columns (V1, V2, ...,VN), it is
feasible to combine Equations 4 and 5 to obtain the C
matrix as expressed in Equation 7:

Equation 7 omits the argument (t) from the
symbols for P(t) and E(t), respectively. The
understanding here is that the actual evaluation occurs
at the same t. Given the initial vector P(0), it is
convenient to process the evaluations at t = 0. The
ramification is that each element of E(0) is either 1 (1st

appearance of a distinct root) or 0 (subsequent
appearances), and that the remaining columns E(j) can
be formulated based on a simple rule. To illustrate, if
the i-th element of E(0) represents the form eρt, the
corresponding row of the square matrix composed of
the E columns can be expressed as [1, ρ, ρ2 , …, ρN-1 ].
In the scenario where there are repeated roots, some of
the elements of E(0) will represent the form tkeρt, a
form where the corresponding row begins with k
zeros, and contains the remaining terms as indicated
by:

In Equation 8, if k = 0, the already discussed
[1, ρ, ρ2 ,…, ρN-1] form applies. Assuming that ε
denotes the square matrix whose columns represent
the E(j)(0) vectors, and utilizing the orthogonal unit
row vectors R1 = [1,0,0,..], R2 = [0,1,0,..], R3 =
[0,0,1,..] etc. results in re-formulating Equation 7 as
depicted in Equation 9, which allows for expressing
the complete solution as depicted in Equation 10.

To further illustrate the application of the
discussed solution, this study considers a simple
monotonic Markov model as shown in Figure 1. In the
presented Markov model, all the probability is initially
in state 1.
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Figure 1. Monotonic Markov Model

The presented system in Figure 1 is
considered to be conservative, and therefore the
summation of all the state probabilities always equals
to 1. This implies that the 7 system equations are not
independent. Considering the equations for the states 1
through 6 as the independent equations of the system,
it is feasible to formulate that P1(t) = MP(t) where

The 6 eigenvalues of the system, as
determined by solving for the roots of the
characteristic polynomial that is give by the
determinant |M-ρI| equal to ρ1 = -3λ, ρ2 = -2λ, ρ1, and
ρ3 … ρ6 = λ, respectively.

Therefore, the system discloses 3 distinct
roots, with 1 that represents a multiplicity of 4. Hence,
the matrix comprised of the E(j)(0) column vectors can
be expressed as in Equation 12. Substituting Equation
12 into Equation 10 results in defining P(t) as
expressed in Equation 13.

The individual time-dependent probability
functions can now be defined. The time-dependent
probability for state 7 can be expressed as the
complement of the probability for the other 6 states.
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